Liên quân mobile: du hành athanor " quyển 2"
Chương 77 : Tứ toán vô phương
Cả bốn đứa chạy đến hội trường học viện. Số người đến theo dõi buổi giao lưu không nhiều, chắc giống kiểu bị bắt đi.
Một thầy giáo đứng đó bảo:
- Mấy em, vô đi!
Học sinh đi vào hội trường tìm chỗ ngồi, cả bốn đứa tiến vào thì bị ông ta chặn lại:
- Mấy đứa nhóc nào đây?
- Tụi em vào xem ... - Tôi đáp.
- Mấy đứa nhóc con như mấy đứa mà đòi theo dõi giao lưu toán học à, về hết đi!
Nam nắm chặt tay định đấm ông thầy nhưng Keera ngăn lại:
- Bình tĩnh xíu đi anh.
- Giờ thế này, ta sẽ đưa ra bốn câu hỏi, đứa nào trả lời đúng thì vô. Sao?
Tôi gật đầu:
- OK!
- Câu đầu tiên, 34 + 87 bằng bao nhiêu?
- Ơ ơ ... - Sinestrea ngơ ngác - 34 cộng với 87, cộng vô ...
Hai bàn tay của tôi di chuyển trong không khí, Nam nhìn tôi khó hiểu:
- Mày làm gì vậy?
- ...
- Ê!
Tôi đáp to:
- 121!
- Cái gì ... đừng có bốc phét! Mày nói đại thôi đúng không?
- Kiểm lại thì biết. - Tôi cười.
Thầy giáo kia lấy máy tính bấm bấm, ông ta bị sốc khi tôi trả lời đúng nhưng sau đó cố trấn tĩnh lại:
- Ha ha, thầy nhầm. Câu này đơn giản quá. Câu kế nè, 287 + 799 bằng bao nhiêu?
Sinestrea gãi đầu:
- Ôi sao số bự quá vậy?
- ... - Tôi dùng tay tính - Ôi đệt số lớn quá!
- 1085 thưa thầy. - Keera trả lời tự tin.
Ông thầy kia ngạc nhiên liền bấm máy kiểm tra. Vừa bấm xong, ông ta cười ha hả:
- Ha ha ha, sai bét rồi nhóc con! 1086 nhé.
- Ơ thôi chết ... mình quên mất, 7 + 9 mà mình đi cộng 8! Aizzz!
Sinestrea ngạc nhiên:
- Ê, sao tính nhanh vậy, ra gần đúng luôn á.
- Đơn giản thôi, tách số ra cộng dần. 287 ta tách ra 200, 80 và 7. 799 tách ra 700, 90 và 9. 200 + 700 + 80 + 90 + 7 + 9 = 900 + 170 + 16.
Nam hỏi:
- Cái 900 + 170 ấy, số nó thế sao tính?
- Nếu còn thấy khó thì tách ra 900 + 100 + 70 = 1070, cộng 16 vô nữa là 1086.
Ông thầy kia mím môi:
- Con nhỏ này khá, nhỏ xíu mà tìm được cách tính nhanh quá.
- Sao, thầy còn hỏi gì nữa không?
- Vậy giải câu này xem! 53 : 4.
Tôi lẩm bẩm:
- 53 chia 4 à, để coi, chia ra là ...
- 13 dư 1! - Nam đáp.
- What? - Ông thầy trố mắt - Ghê vậy?
Nam giải thích:
- Nhớ trò tiến lên không, bộ bài 52 lá chia 4 người thì mỗi người 13 lá. Vậy nên 53 : 4 = 13 dư 1.
- Hừm ...
Sinestrea lẩm bẩm:
- Chán thật, nãy giờ không trả lời đúng được câu nào.
- Thầy Kitez ơi! - Có tiếng gọi - Thầy làm gì đấy?
Tôi nhận ra đấy là Slimz, trông vẻ mặt thầy ấy khá là trẻ, cũng phải thôi. Slimz lại hỏi:
- Có chuyện gì vậy thầy?
- Tụi nó đòi vô xem giao lưu, nhưng ...
- Trời ơi, cho tụi nó vô đi!
Thầy Kitez ngạc nhiên:
- Nhưng tụi nó ...
- Kệ đi! Vô đi mấy đứa! À cho hỏi, mấy đứa tên gì vậy?
Tôi định đáp nhưng Keera bảo:
- Đừng dùng tên thật.
- Ờ ... con tên Hugo ạ.
- Con tên là Ronaldo. - Nam đáp.
Keera dùng một chút tiểu xảo thay vài chữ trong tên mình thành Kaare. Riêng Sinestrea, có vẻ cô nàng không biết ý Keera nên đáp:
- Em tên Sinestrea ạ.
- Ê ê bà nội ... - Keera.
Có vẻ Slimz nghe không rõ nên cười:
- Elise à, thôi vào đi.
- Xài tên thật cho chết à! - Keera huých Sinestrea.
Nói sơ về buổi giao lưu toán học, có tám đại biểu của 4 lực lượng chính ở Athanor, ngoài ra còn có học sinh của học viện. Bọn họ nói nhiều về những thứ liên quan đến toán học, tôi không nhớ gì nhiều bởi tôi không thật sự hứng thú với môn học này.
Phần tôi hứng thú nhất chính là phần thi giải toán, học viện sẽ cử đại diện cho các cấp học lên giải toán. Những bài toán khá là đơn giản, tôi không thể nghĩ được nó lại dễ đến thế. Có một bài toán như thế này: cho tam giác ABC vuông tại A và đường cao AH. Biết AB = 6 cm, AC = 8 cm. Tính AH.
Keera bảo:
- Bài này dùng Py-ta-go với hệ thức lượng thôi, mới học năm lớp 10 đây mà.
- Gì? - Tôi ngạc nhiên - Py-ta-go học từ năm lớp 7 mà.
- Ở Trái Đất học sớm thế à, ở đây thì toán học không dạy sâu dữ vậy đâu. Chẳng qua do tui cần lấy bằng kiến thức nên mới học lớp Đ đấy.
Đang tám thì Xeniel - dẫn chương trình thông báo:
- Và đây là phần toán vô phương, có em nào muốn thử sức không?
- A, đây rồi! - Tôi vỗ tay - Đợi xem Elise ... ơ khoan, không lẽ ...
Sinestrea bước lên, Xeniel ngạc nhiên:
- Ủa con đi đâu vậy?
- Giải toán.
- Thôi thôi con đi ra, chỗ này chú đang dẫn chương trình.
Slimz chen vào:
- Cứ để nó giải đi, nó không phải dạng vừa đâu.
- Rồi, còn ai nữa không?
Không thấy ai giơ tay, tôi định giơ nhưng Nam bảo:
- Thôi đi ba!
- Nhưng Sinestrea đâu giỏi toán lắm đâu, sao cô ấy lại ... - Keera ngạc nhiên.
Cả khán đài vô cùng ngạc nhiên trước cô bé chỉ mới nhỏ xíu đã xung phong lên giải toán. Các đại biểu của lực lượng cũng trầm trồ. Xeniel hỏi:
- Con tên gì?
Sinestrea đáp:
- Con tên Elise.
- Con sẵn sàng chưa?
- Rồi ạ.
- Mời đại biểu của lực lượng Sa Đọa đưa câu hỏi.
Nakroth cầm một phong bì, cậu ta xé ra rồi đưa cho Xeniel đọc:
- Trong một tiểu đội gồm 4 người nhóm máu O, 5 người nhóm máu A, 8 người nhóm máu B và 2 người nhóm máu AB. Nakroth cần chọn 6 người thành lập đội hiến máu tình nguyện sao cho số người có nhóm máu O luôn ít nhất là hai người. Hỏi có bao nhiêu cách chọn?
Vừa đọc xong câu hỏi, cả khán đài đã trầm trồ với độ khó. Sinestrea gãi đầu, cô lẩm bẩm:
- Tổ cha nó, lại gặp tổ hợp xác suất.
Cầm cây bút viết lên bảng, cô viết viết vài dòng. Phía dưới, cả bọn cũng hí hoáy tìm cách giải.
- Bài này nó nhiều trường hợp, viết một hồi lại loạn cả lên. - Tôi nói.
- Đúng, khó thiệt. Ở Athanor, lên đại học cấp cao mới học mấy cái kiểu như này.
- Vậy luôn ... ơ thế có khác gì lấy toán lớp cao đem xuống lớp dưới rồi gắn mác nâng cao đâu?
Nam huýt sáo:
- Tao thua.
Sau một hồi, Sinestrea cũng viết lên bảng được bài làm của mình. Bài làm của cô được dậy lại.
Xeniel hỏi:
- Con tính thế nào vậy?
- Con tính số cách của từng trường hợp rồi cộng lại ạ.
Ồ, các khán giả trầm trồ. Nakroth đứng dậy:
- Không đùa chứ, mới bé tí đã hiểu được đến thế sao?
- Chúng ta cùng xem bài làm của Elise nào!
Tấm màn được lật ra, câu trả lời của cô nàng là 13460 cách. Tôi trầm trồ:
- Chà chà, kinh đấy.
- Đáp án là gì ạ?
- 4480 cách. - Nakroth.
Sinestrea ôm đầu:
- What?
- Để tôi xem ... A, con bé nhầm giữa tổ hợp và chỉnh hợp. Chúng ta chọn người chứ không kể thứ tự của từng người, con bé nhầm nên cho ra kết quả sai.
Ồ, khán giả ồ lên. Xeniel đỡ cho Sinestrea:
- Một tràng vỗ tay cho Elise nào.
Khán giả vỗ tay bốp bốp khích lệ. Xeniel nói tiếp:
- Chúng ta cùng đến với câu hỏi số hai, xin mời đại diện của lâu đài Khởi Nguyên.
Arthur đứng lên đọc:
- Tại cuộc họp có 8 đại biểu từ bốn lực lượng CAS, LSĐ, KCV và LKN (mỗi lực lượng gồm 2 đại biểu). Người ta xếp tám đại biểu vào một cái bàn dài 8 chỗ ngồi. Hỏi có bao nhiêu cách sắp xếp sao cho hai đại biểu của cùng một lực lượng không ngồi cạnh nhau?
Sinestrea mím môi:
- Chậc chậc, câu này căng quá.
Ngồi ở dưới, ba đứa hợp tác giải. Tôi bảo:
- Ghế đầu là 8 cách chọn, ghế sau là 6 cách chọn nè. Ghế ba là trừ bớt 2 người, trừ 1 trùng với 1 người ghế 2 ... Ôi ôi nhức đầu quá!
Keera tiếp lời:
- Hừ, ghế đầu 8 do muốn chọn ai cũng được. Ghế sau ta trừ 1 người do đã xếp, trừ thêm 1 người trùng lực lượng là còn 6 cách. Ghế tiếp theo, ta còn 6 người nhưng phải bỏ đi một người trùng nữa là còn 5. Ghế thứ tư, còn 5 nhưng trừ 1 là 4.
Nam chen ngang:
- Ê, vậy 4 ghế còn lại là hoán vị của 4 đấy.
- Tào lao! - Tôi quát.
- Không phải đâu anh, ghế số 5 phải bỏ người đại diện của lực lượng trùng nên còn 3. Ba ghế còn lại chỉ còn là sự lựa chọn của 3 người còn lại, lúc này mới hoán vị 3.
Tôi ghi ra giấy:
- Vậy số cách là 8.6.5.4.3.3.2.1 = 17280 cách. Để xem Sines... HẢ?
Cô ấy ghi lên bảng: số cách xếp bằng 8! = 40320 cách. Dĩ nhiên, với đáp số này thì chắc chắn sai bởi đó là số cách xếp bất kì. Nhưng Arthur bảo:
- Biết được số cách xếp bằng hoán vị này là hay đấy.
- Hừm ... - Sinestrea phịu má.
- Một tràng vỗ tay khích lệ nào mọi người.
BỐP BỐP, cả đám vỗ tay. Slimz đứng cạnh bọn tôi từ lúc nào, thầy ấy bảo:
- Con bé có tố chất trở thành nhà toán học đấy, nếu được đào tạo kĩ càng thì ta chắc chắn nó sẽ là thiên tài.
Xeniel bảo:
- Mời đại diện của cung điện Ánh Sáng.
Yorn đứng lên:
- Tại một bảng đấu của cuộc thi bắn cung gồm 6 cung thủ, bốn tuyển thủ xếp hạng từ 1 – 4 sẽ được đi tiếp. Biết cung thủ Yorn chắc chắn đi tiếp, tính số trường hợp xếp hạng có thể xảy ra ở 4 vị trí đầu tiên.
Tôi lẩm bẩm:
- Cái này có tính thứ tự, ta có chỉnh hợp chập 4 của 6 là 360 cách. Còn Yorn thì ...
- Ta tính số trường hợp Yorn không đi tiếp đi rồi trừ ra. - Nam bảo.
- Ý kiến hay. Bỏ Yorn ra còn 5, ta có chỉnh hợp chập 4 của 5 là 120. 360 - 120 = 240 cách.
Keera cười:
- Bài này dễ nhỉ, không biết Sines ... HẢ?
Sinestrea giải theo một cách khác, cô nàng tính số bảng xếp hạng bằng ... 6 giai thừa rồi trừ đi 4 do Yorn có thể đứng ở 4 chỗ. Đương nhiên, với cách này sai bét hoàn toàn và không thể cứu vãn được.
Tôi lắc đầu:
- Toang thật rồi, toang thật rồi vú em ạ.
Sai cả ba câu, tôi không biết Sinestrea cảm thấy thế nào. Ở câu hỏi số 4, Payna đưa ra câu hỏi như thế này: Từ Vacsar đến Vedo có 6 con đường, từ Vedo đến Elthihat có 8 con đường. Hỏi có bao nhiêu cách đi từ Vacsar đến Elthihat, qua Vedo rồi quay về Vacsar sao cho đường về không trùng với đường đi?.
Câu này thì không khó nhưng Sinestrea lại không giải được, chính xác hơn cô nàng chỉ tính được số đường đi chứ đường về cô chịu. Tuy nhiên, đối với nhiều người, Sinestrea đã làm được những bước cơ bản trong phần tổ hợp xác suất này, đó là một thành công.
Sinestrea bỏ sân khấu trong sự ngỡ ngàng của mọi người. Cô bước ra khỏi hội trường, cả bọn vội chạy theo:
- Đợi tụi này với!
Quay về chỗ cỗ máy thời gian, cả đám lên và trở về hiện tại. Slimz đuổi theo:
- Elise ơi! Elise ... nó đi đâu rồi? Phải nhờ cảnh sát tìm mới được.
*
(Hiện tại - Học viện Athanor)
Vừa bước ra khỏi cỗ máy thời gian, Lumica đã đợi sẵn:
- Mấy đứa!
- Oái ... cô Lumica ... - Keera hoảng hốt.
Tôi nhìn lại tay chân, may quá trở lại bình thường rồi. Có điều ...
- OÁI! KHÔNG ĐƯỢC NHÌN! - Sinestrea và Keera giật nảy mình vội che người lại, hai người họ cũng nhắm mắt vì tôi và thằng Nam đang trần như nhộng.
Thay quần áo xong, Lumica bảo cả bốn đứa ngồi xuống, lấy giấy bút ra viết bảng kiểm điểm vì tội sử dụng dụng cụ ma thuật không phục vụ mục đích học tập. Tôi có cố thanh minh nhưng không được.
- Rút kinh nghiệm nghe chưa!
- Dạ ...
Bốn đứa giải tán, tôi và Sinestrea trở về nhà, lúc này thì đã mười một giờ trưa. Tôi không nói gì về màn trình diễn của Sinestrea nhưng vẫn thắc mắc trong đầu:
- Không lẽ Elise là Sinestrea tương lai hay sao?
Truyện khác cùng thể loại
34 chương
2383 chương
49 chương
2767 chương
304 chương
1669 chương
227 chương